Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.390
Filtrar
1.
Heliyon ; 10(7): e28552, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560176

RESUMO

Introduction: Simultaneous involvement of the peripheral nervous system (PNS) and central nervous system (CNS) during the same period in diffuse large B-cell lymphoma (DLBCL) is rarely documented. In this particular case, the diagnosis of diffuse large B-cell lymphoma was pathologically confirmed, with invasion into the basal ganglia, diencephalon, and several peripheral nerves. The initial clinical manifestations were dyspnoea and hyperventilation. Case presentation: The patient presented to the hospital with fatigue, dyspnoea, and limb pain for over 7 months, accompanied by progressive breathlessness and unconsciousness in the last 6 days. Initial treatment with glucocorticoids for Guillain-Barre syndrome (GBS) proved ineffective in controlling the severe shortness of breath and hyperventilation, necessitating the use of ventilator-assisted ventilation. 18-Fluorodeoxyglucose positron emission tomography/computed tomography (18FDG PET/CT) showed that the basal ganglia, brainstem, and multiple peripheral nerves were thickened and metabolically active. There were atypical cells in the cerebrospinal fluid; the pathology indicated invasive B-cell lymphoma, demonstrating a propensity toward diffuse large B-cell lymphoma (DLBCL). After receiving chemotherapy, the patient regained consciousness and was successfully weaned off ventilator assistance but died of severe pneumonia. Discussion: The early clinical manifestations of DLBCL lack specificity, and multifocal DLBCL complicates the diagnostic process. When a single primary disease cannot explain multiple symptoms, the possibility of DLBCL should be considered, and nervous system invasion should be considered when nervous system symptoms are present. Once nervous system involvement occurs in DLBCL, whether the central or peripheral nervous system, it indicates a poor prognosis.

2.
Perfusion ; : 2676591241242018, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557237

RESUMO

Background: In lung transplantation surgery, extracorporeal life support (ECLS) is essential for safety. Various support methods, including cardiopulmonary bypass (CPB) and off-pump techniques, are used, with extracorporeal membrane oxygenation (ECMO) gaining prominence. However, consensus on the best support strategy is lacking.Purpose: This article reviews risks, benefits, and outcomes of different support strategies in lung transplantation. By consolidating knowledge, it aims to clarify selecting the most appropriate ECLS modality.Research Design: A comprehensive literature review examined CPB, off-pump techniques, and ECMO outcomes in lung transplantation, including surgical results and complications.Study Sample: Studies, including clinical trials and observational research, focused on ECLS in lung transplantation, both retrospective and prospective, providing a broad evidence base.Data Collection and/or Analysis: Selected studies were analyzed for surgical outcomes, complications, and survival rates associated with CPB, off-pump techniques, and ECMO to assess safety and effectiveness.Results: Off-pump techniques are preferred, with ECMO increasingly vital as a bridge to transplant, overshadowing CPB. However, ECMO entails hidden risks and higher costs. While safer than CPB, optimizing ECMO postoperative use and monitoring is crucial for success.Conclusions: Off-pump techniques are standard, but ECMO's role is expanding. Despite advantages, careful ECMO management is crucial due to hidden risks and costs. Future research should focus on refining ECMO use and monitoring to improve outcomes, emphasizing individualized approaches for LT recipients.

3.
Nat Prod Res ; : 1-10, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563116

RESUMO

Phytochemical investigation of the roots of Saposhnikovia divaricata (Turcz.) Schischk resulted in the isolation of twelve coumarin derivatives including one new 3,4-dihydroisocoumarin (1) and eleven known 3,4-unsubstituted coumarins (2-12). Structural elucidation of compounds 1-12 was established by 1D and 2D NMR spectra referring to the literature, together with high-resolution mass spectrometric analysis. LPS-induced RAW264.7 inflammatory cell model was used to determine the potential antiinflammation activity of all the isolated compounds in vitro. The results showed that compound 3 significantly inhibited the production of lipopolysaccharide (LPS)-induced NO in macrophages (IC50 = 4.54 ± 1.71 µM), more active than the positive control (L-NMMA).

4.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559257

RESUMO

While challenging, identifying individuals displaying resilience to Alzheimer's disease (AD) and understanding the underlying mechanism holds great promise for the development of new therapeutic interventions to effectively treat AD. Down syndrome (DS), or trisomy 21, is the most common genetic cause of AD. Interestingly, some people with DS, despite developing AD neuropathology, show resilience to cognitive decline. Furthermore, DS individuals are at an increased risk of myeloid leukemia due to somatic mutations in hematopoietic cells. Recent studies indicate that somatic mutations in hematopoietic cells may lead to resilience to neurodegeneration. Microglia, derived from hematopoietic lineages, play a central role in AD etiology. We therefore hypothesize that microglia carrying the somatic mutations associated with DS myeloid leukemia may impart resilience to AD. Using CRISPR-Cas9 gene editing, we introduce a trisomy 21-linked hotspot CSF2RB A455D mutation into human pluripotent stem cell (hPSC) lines derived from both DS and healthy individuals. Employing hPSC-based in vitro microglia culture and in vivo human microglia chimeric mouse brain models, we show that in response to pathological tau, the CSF2RB A455D mutation suppresses microglial type-1 interferon signaling, independent of trisomy 21 genetic background. This mutation reduces neuroinflammation and enhances phagocytic and autophagic functions, thereby ameliorating senescent and dystrophic phenotypes in human microglia. Moreover, the CSF2RB A455D mutation promotes the development of a unique microglia subcluster with tissue repair properties. Importantly, human microglia carrying CSF2RB A455D provide protection to neuronal function, such as neurogenesis and synaptic plasticity in chimeric mouse brains where human microglia largely repopulate the hippocampus. When co-transplanted into the same mouse brains, human microglia with CSF2RB A455D mutation phagocytize and replace human microglia carrying the wildtype CSF2RB gene following pathological tau treatment. Our findings suggest that hPSC-derived CSF2RB A455D microglia could be employed to develop effective microglial replacement therapy for AD and other age-related neurodegenerative diseases, even without the need to deplete endogenous diseased microglia prior to cell transplantation.

5.
Cancer Discov ; 14(4): 653-657, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571418

RESUMO

SUMMARY: Nutrients are essential for supporting tumor growth and immune cell function in the tumor microenvironment, but emerging evidence reveals a paradoxical competition and collaboration between the metabolic demands of proliferating cancer cells and immune cell activation. Dietary interventions and metabolic immunoengineering offer promise to selectively modulate cancer and immune cell metabolism by targeting metabolic sensing processes rather than pathways directly, moving beyond conventional ideas and heralding an exciting new era of immunometabolism discovery and translation.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Microambiente Tumoral
6.
ACS Biomater Sci Eng ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578110

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Drug delivery to the brain through the blood-brain barrier (BBB) is a significant challenge in PD treatment. Exosomes, which can efficiently traverse the BBB, which many drugs cannot penetrate, are ideal natural carriers for drug delivery. In this study, the BBB shuttle peptide was modified on the exosome surfaces. Three types of exosomes were constructed, each modified with a distinct peptide (RVG29, TAT, or Ang2) and loaded with miR-133b. The safety and brain-targeting capabilities of these peptide-modified exosomes were then evaluated. Finally, the mechanism by which RVG29-Exo-133b regulates the RhoA-ROCK signaling pathway was investigated. The findings indicate that the three peptide-modified exosomes were adequately tolerated, safe, and effectively assimilated in vivo and ex vivo, with RVG29 exhibiting superior targeting to the brain. Furthermore, RVG29-Exo-133b decreased the phosphorylation level of the Tau protein by targeting the RhoA-ROCK signaling pathway. It also enhanced the motor function in mice with PD, thereby reducing the degree of depression, improving dopaminergic neuron function, and attenuating 6-OHDA-induced nerve damage. In this study, we developed a stable drug delivery mechanism that targets the intracerebral region using exosomes. Furthermore, a novel strategy was developed to manage PD and can potentially serve as a preclinical basis for utilizing exosomes in the diagnosis and treatment of neurodegenerative conditions.

7.
Exp Ther Med ; 27(5): 230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38596657

RESUMO

The treatment of infected tibial bone defects can be challenging for the orthopedic surgeon. Therefore, the aim of the present study was to compare the fixation endurance, bone union time, lower limb joint function and complications associated with different fixation methods in the treatment of bone defects caused by debridement in the treatment of post-traumatic osteomyelitis. The clinical data of 55 patients with infected bone defects of the lower extremities following traumatic injury, who had undergone radical debridement between January 2017 and September 2020, were retrospectively analyzed. The patients were divided into three groups according to the type of fixation during reconstruction, namely the external fixation (EX), internal fixation (IX) and non-contact locking plate (LP) groups. The demographic data, time to bone union, bacterial culture results, complications and Self-Rating Anxiety Scale (SAS) scores of the patients were compared among the three groups. The results indicated that the differences in time to bone union and recurrence rates of osteomyelitis among the three groups were not statistically significant. By contrast, functional status after surgery was significantly higher in the LP group compared with the EX group. In total, 8/22 patients (36.4%) in the EX group, 4/13 patients (30.8%) in the IX group and 4/20 patients (20.0%) in the non-contact LP group had shortened limbs and deformed tibia. The SAS assessment results revealed that patients in the non-contact LP group had the lowest rates of moderate and severe anxiety. In conclusion, the results of the present study demonstrate that the non-contact locking plate technique provided stable fixation without any contact between the implant and bone tissues. Therefore, this technique may be viable for use during the reconstruction stage of post-traumatic tibial osteomyelitis.

8.
Comput Biol Chem ; 110: 108058, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38593480

RESUMO

Exploring the relationship between proteins and drugs plays a significant role in discovering new synthetic drugs. The Drug-Target Interaction (DTI) prediction is a fundamental task in the relationship between proteins and drugs. Unlike encoding proteins by amino acids, we use amino acid subsequence to encode proteins, which simulates the biological process of DTI better. For this research purpose, we proposed a novel deep learning framework based on Bidirectional Encoder Representation from Transformers (BERT), which integrates high-frequency subsequence embedding and transfer learning methods to complete the DTI prediction task. As the first key module, subsequence embedding allows to explore the functional interaction units from drug and protein sequences and then contribute to finding DTI modules. As the second key module, transfer learning promotes the model learn the common DTI features from protein and drug sequences in a large dataset. Overall, the BERT-based model can learn two kinds features through the multi-head self-attention mechanism: internal features of sequence and interaction features of both proteins and drugs, respectively. Compared with other methods, BERT-based methods enable more DTI-related features to be discovered by means of attention scores which associated with tokenized protein/drug subsequences. We conducted extensive experiments for the DTI prediction task on three different benchmark datasets. The experimental results show that the model achieves an average prediction metrics higher than most baseline methods. In order to verify the importance of transfer learning, we conducted an ablation study on datasets, and the results show the superiority of transfer learning. In addition, we test the scalability of the model on the dataset in unseen drugs and proteins, and the results of the experiments show that it is acceptable in scalability.

9.
ACS Omega ; 9(13): 15641-15649, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585120

RESUMO

NaCl-modified graphitic carbon nitrides (GCN) were applied in the base-catalyzed transesterification of recovered oil. GCN has been seen as a prospective heterogeneous catalyst for transesterification, but pristine-GCN has a narrow range of applications because of its weak basic sites and small surface area. To overcome these defects, NaCl-modified GCN was prepared through the co-thermal polymerization of NaCl with urea. The doping of NaCl generated C≡N and Na-N species, which enhanced the basicity of the catalyst. Meanwhile, with the assistance of NaCl, GCN was decomposed and produced a large number of small pores of hundreds of nanometers, which contributed to the increase in specific surface area. In addition, the effects of transesterification parameters and their interactions on biodiesel yields were investigated by using Box-Behnken design, and the reaction conditions were optimized. A high biodiesel yield of 93.05% was achieved under the optimal conditions.

10.
Carbohydr Polym ; 335: 122110, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616084

RESUMO

A neutral heteropolysaccharide (PNANb) was isolated with alkali (0.1 M NaOH) from mycelia of Phellinus nigricans, and the structure, immunostimulating activity and some of the underlying molecular mechanisms of action of PNANb were explored in the current study. PNANb (14.95 kDa) predominantly consisted of Gal, Glc, and Man with minor Fuc. GC-MS and NMR analyses indicated that the backbone of PNANb was mainly composed of 6-α-Galp, 2,6-α-Galp with minor 3,6-ß-Glcp, which was substituted with complex side chains at C-2 of 2,6-α-Galp and C-3 of 3,6-ß-Glcp. Notably, PNANb (50 or 100 mg/kg) possessed immunoprotective effects in cyclophosphamide (Cy)-induced immunosuppressed C57BL/6 mice, which was supported by evidence including the enhancement of spleen and thymus indices, levels of serum immunoglobulins (IgG, IgM) and cytokines (IFN-γ, IL-2, IL-4, IL-10), and macrophage activity. However, the immunostimulation effects of PNANb were decreased when macrophages were depleted, underscoring the essential role of macrophages in the beneficial effects of PNANb in Cy-induced immunosuppressed mice. Further investigations in vitro indicated that PNANb activated macrophages through MAPK/NF-κB signaling pathways mediated by Toll-like receptor 4. Therefore, PNANb can serve as a prospective immunopotentiator in immunosuppression.


Assuntos
Adjuvantes Imunológicos , Álcalis , Phellinus , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos/farmacologia , Estudos Prospectivos , Ciclofosfamida/farmacologia , Macrófagos
11.
Inorg Chem ; 63(15): 6714-6722, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557020

RESUMO

Converting CO2 into valuable chemicals via sustainable energy sources is indispensable for human development. Photothermal catalysis combines the high selectivity of photocatalysis and the high yield of thermal catalysis, which is promising for CO2 reduction. However, the present photothermal catalysts suffer from low activity due to their poor light absorption ability and fast recombination of photogenerated electrons and holes. Here, a TiO2@Bi2WO6 heterojunction photocatalyst featuring a hierarchical hollow structure was prepared by an in situ growth method. The visible light absorption and photothermal effect of the TiO2@Bi2WO6 photocatalyst is promoted by a hierarchical hollow structure, while the recombination phenomenon is significantly mitigated due to the construction of the heterojunction interface and the existence of excited Bi(3-x)+ sites. Such a catalyst exhibits excellent photothermal performance with a CO yield of 43.7 µmol h-1 g-1, which is 15 and 4.7 times higher than that of pure Bi2WO6 and that of physically mixed TiO2/Bi2WO6, respectively. An in situ study shows that the pathway for the transformation of CO2 into CO over our TiO2@Bi2WO6 proceeds via two important intermediates, including COO- and COOH-. Our work provides a new idea of excited states for the design and synthesis of highly efficient photothermal catalysts for CO2 conversion.

12.
Microbiol Spectr ; : e0183923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564670

RESUMO

Solid organ transplantation is a crucial treatment for patients who have reached the end stage of heart, lung, kidney, or liver failure. However, the likelihood of developing cancer post-transplantation increases. Additionally, primary malignant tumors remain a major obstacle to the long-term survival of transplanted organs. Therefore, it is essential to investigate effective therapies that can boost the immune system's ability to combat cancer and prevent allograft rejection. We established a mouse orthotopic liver tumor model and conducted allogeneic heterotopic heart transplantation. Various treatments were administered, and survival curves were generated using the Kaplan-Meier method. We also collected graft samples and measured inflammatory cytokine levels in the serum using an inflammatory array. The specificity of the histochemical techniques was tested by staining sections. We administered a combination therapy of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 to primary liver cancer model mice with cardiac allografts. Consistent with our prior findings, L. rhamnosus HN001 alleviated the intestinal flora imbalance caused by BEZ235. Our previous research confirmed that the combination of BEZ235 and L. rhamnosus HN001 significantly prolonged cardiac transplant survival. IMPORTANCE: We observed that the combination of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 notably prolonged cardiac transplant survival while also inhibiting the progression of primary liver cancer. The combination therapy was efficacious in treating antitumor immunity and allograft rejection, as demonstrated by the efficacy results. We also found that this phenomenon was accompanied by the regulation of inflammatory IL-6 expression. Our study presents a novel and effective therapeutic approach to address antitumor immunity and prevent allograft rejection.

13.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1240-1248, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621970

RESUMO

Tianwang Buxin Pills have demonstrated therapeutic effects in clinical practice, whereas there is a serious lack of comprehensive quality control to ensure the safety and effectiveness of clinical medication. In this study, ultra-performance liquid chromatography(UPLC) was employed to establish the fingerprint and the method for simultaneously determining the content of seven components of Tianwang Buxin Pills. Furthermore, chemometrics was employed to identify the key factors for the stable quality, which provided a reference for the comprehensive quality control and evaluation of this preparation. There were 25 common peaks in the UPLC fingerprints of 15 batches of Tianwang Buxin Pills, from which thirteen compounds were identified. A quantitation method was established for seven pharmacological components(α-linolenic acid, salvianolic acid B, glycyrrhetinic acid, schisandrin A, ß-asarone, 3,6'-disinapoylsucrose, and ligustilide). The principal component analysis(PCA) and partial least square discriminate analysis(PLS-DA) were performed to determine the key pharmacological components for controlling the quality stability of Tianwang Buxin Pills, which included 3,6'-disinapoylsucrose, α-linolenic acid, and ß-asarone. The established fingerprint and multi-component content determination method have strong specificity, stability, and reliability. In addition, 3,6'-disinapoylsucrose, α-linolenic acid, and ß-asarone are the key pharmacological components that ensure the quality stability between batches and can be used to comprehensively control the quality of Tianwang Buxin Pills. The findings provide a scientific basis for the quality evaluation and standard establishment of Tianwang Buxin Pills.


Assuntos
Derivados de Alilbenzenos , Anisóis , Ácidos Cumáricos , Medicamentos de Ervas Chinesas , Sacarose/análogos & derivados , Medicamentos de Ervas Chinesas/farmacologia , Cromatografia Líquida de Alta Pressão , Reprodutibilidade dos Testes , Ácido alfa-Linolênico , Controle de Qualidade
14.
Stem Cells ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597671

RESUMO

Although mesenchymal stromal cell (MSC) based therapies hold promise in regenerative medicine, their clinical application remains challenging due to issues such as immunocompatibility. MSC-derived exosomes are a promising off-the-shelf therapy for promoting wound healing in a cell-free manner. However, the potential to customize the content of MSC-exosomes, and understanding how such modifications influence exosome effects on tissue regeneration remain underexplored. In this study, we used an in vitro system to compare the priming of human MSCs by two inflammatory inducers TNF-α and CRX-527 (a highly potent synthetic TLR4 agonist that can be used as a vaccine adjuvant or to induce anti-tumor immunity) on exosome molecular cargo, as well as on an in vivo rat ligament injury model to validate exosome potency. Different microenvironmental stimuli used to prime MSCs in vitro affected their exosomal microRNAs and mRNAs, influencing ligament healing. Exosomes derived from untreated MSCs significantly enhance the mechanical properties of healing ligaments, in contrast to those obtained from MSCs primed with inflammation-inducers, which not only fail to provide any improvement but also potentially deteriorate the mechanical properties. Additionally, a link was identified between altered exosomal microRNA levels and expression changes in microRNA targets in ligaments. These findings elucidate the nuanced interplay between MSCs, their exosomes, and tissue regeneration.

15.
Natl Sci Rev ; 11(5): nwae085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577670

RESUMO

Catalytic oxidative desulfurization (ODS) using titanium silicate catalysts has emerged as an efficient technique for the complete removal of organosulfur compounds from automotive fuels. However, the precise control of highly accessible and stable-framework Ti active sites remains highly challenging. Here we reveal for the first time by using density functional theory calculations that framework hexa-coordinated Ti (TiO6) species of mesoporous titanium silicates are the most active sites for ODS and lead to a lower-energy pathway of ODS. A novel method to achieve highly accessible and homogeneously distributed framework TiO6 active single sites at the mesoporous surface has been developed. Such surface framework TiO6 species exhibit an exceptional ODS performance. A removal of 920 ppm of benzothiophene is achieved at 60°C in 60 min, which is 1.67 times that of the best catalyst reported so far. For bulky molecules such as 4,6-dimethyldibenzothiophene (DMDBT), it takes only 3 min to remove 500 ppm of DMDBT at 60°C with our catalyst, which is five times faster than that with the current best catalyst. Such a catalyst can be easily upscaled and could be used for concrete industrial application in the ODS of bulky organosulfur compounds with minimized energy consumption and high reaction efficiency.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38652217

RESUMO

Thrombus age determination in fatal venous thromboembolism cases is an important task for forensic pathologists. In this study, we investigated the time-dependent expressions of formyl peptide receptor 2 (FPR2) and Annexin A1 (ANXA1) in a stasis-induced deep vein thrombosis (DVT) murine model, with the aim of obtaining useful information for thrombus age timing. A total of 75 ICR mice were randomly classified into thrombosis group and control group. In thrombosis group, a DVT model was established by ligating the inferior vena cava (IVC) of mice, and thrombosed IVCs were harvested at 1, 3, 5, 7, 10, 14, and 21 days after modeling. In control group, IVCs without thrombosis were taken as control samples. The expressions of FPR2 and ANXA1 during thrombosis were detected using immunohistochemistry and double immunofluorescence staining. Their protein and mRNA levels in the samples were determined by Western blotting and quantitative real-time PCR. The results reveal that FPR2 was predominantly expressed by intrathrombotic neutrophils and macrophages. ANXA1 expression in the thrombi was mainly distributed in neutrophils, endothelial cells of neovessels, and fibroblastic cells. After thrombosis, the expressions of FPR2 and ANXA1 were time-dependently up-regulated. The percentage of FPR2-positive cells and the level of FPR2 protein significantly elevated at 1, 3, 5 and 7 days after IVC ligation as compared to those at 10, 14 and 21 days after ligation (p < 0.05). Moreover, the mRNA level of FPR2 were significantly higher at 5 days than that at the other post-ligation intervals (p < 0.05). Besides, the levels of ANXA1 mRNA and protein peaked at 10 and 14 days after ligation, respectively. A significant increase in the mRNA level of ANXA1 was found at 10 and 14 days as compared with that at the other post-ligation intervals (p < 0.01). Our findings suggest that FPR2 and ANXA1 are promising as useful markers for age estimation of venous thrombi.

17.
Nat Sci Sleep ; 16: 359-368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617037

RESUMO

Background: Pediatric obstructive sleep apnea (OSA) is a multifaceted disorder marked by recurrent upper airway obstruction during sleep, often coexisting with various medical conditions. This study, aimed to comprehensively analyze the Multifaceted Landscape of Pediatric Insights into Prevalence, Severity, and Coexisting Conditions. With a sample of 1928 participants, our study sought to determine the prevalence, severity, and associations between OSA and diverse conditions. Methods: Conducted retrospectively from February 2019 to April 2023, the study included pediatric patients. Data were collected through electronic health records, involving clinical assessments, medical histories, and diagnostic tests to establish OSA and coexisting condition diagnoses. Relationships between sleep parameters, apnea types, and severity indices were evaluated. Results: High OSA prevalence was evident across age groups, with severity peaking between 3 to 12 years. Among the participants, coexisting conditions included allergic rhinitis (59.6%), tonsillar hypertrophy (49.7%), adenoid hypertrophy (28.4%), and obesity (15.3%). Analysis revealed intriguing relationships between different sleep parameters and apnea types. Notable associations were observed between Obstructive Apnea (OA) and Central Apnea (CA), and Mixed Apnea (MA) displayed associations with both OA and CA. Hypopnea correlated directly with the Apnea-Hypopnea Index (AHI), reflecting its role in OSA severity. Conclusion: This study provides a comprehensive understanding of the intricate dynamics between pediatric OSA and coexisting conditions. The prevalence of OSA and its coexistence with various conditions underscore the need for comprehensive evaluation and management strategies. By revealing associations between different sleep parameters and apnea types, the study emphasizes the complexity of OSA diagnosis and management. These findings hold the potential to enhance clinical approaches, ultimately leading to improved care and outcomes for affected children.

18.
Heliyon ; 10(8): e28976, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628718

RESUMO

The massive consumption of fossil energy has resulted in high CO2 emissions, posing a formidable challenge to global sustainable economic development (SED). As countries endeavor to shift from fossil to clean energy sources to achieve SED, research on the impact of clean energy is scarce, and quantitative analysis is lacking. This study measured China's SED and used a spatial econometric model to examine the impact of clean energy consumption and production on SED across 30 provinces in China from 2008 to 2020. Results show that (1) China's SED exhibits significant positive spatial autocorrelation characteristics, forming a "point-to-area" development pattern. (2) Clean energy consumption, production, and consumption structure all contribute to the promotion of SED in the region and have positive spatial spillover effects. (3) A considerable regional disparity exists in the spatial impact of clean energy on SED. The eastern and central regions have significant positive spatial spillover effects, whereas the western region is opposite. Notably, the estimated coefficient of the spatial Durbin model is relatively small, reflecting China's ongoing transition to clean energy and its limited role in promoting economic sustainability. Joint efforts and differentiated policies are essential to develop clean energy and sustainable economic.

19.
Nat Cancer ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637658

RESUMO

Tailoring optimal treatment for individual cancer patients remains a significant challenge. To address this issue, we developed PERCEPTION (PERsonalized Single-Cell Expression-Based Planning for Treatments In ONcology), a precision oncology computational pipeline. Our approach uses publicly available matched bulk and single-cell (sc) expression profiles from large-scale cell-line drug screens. These profiles help build treatment response models based on patients' sc-tumor transcriptomics. PERCEPTION demonstrates success in predicting responses to targeted therapies in cultured and patient-tumor-derived primary cells, as well as in two clinical trials for multiple myeloma and breast cancer. It also captures the resistance development in patients with lung cancer treated with tyrosine kinase inhibitors. PERCEPTION outperforms published state-of-the-art sc-based and bulk-based predictors in all clinical cohorts. PERCEPTION is accessible at https://github.com/ruppinlab/PERCEPTION . Our work, showcasing patient stratification using sc-expression profiles of their tumors, will encourage the adoption of sc-omics profiling in clinical settings, enhancing precision oncology tools based on sc-omics.

20.
Materials (Basel) ; 17(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612160

RESUMO

At the initial rolling temperature of 400 °C, ZK60 magnesium alloy was hot rolled by three different rolling paths with different roll speed ratios (RSR) of 1:1.15, 1:1.2, and 1:1.5, respectively. The effects of different rolling processes on the microstructure and mechanical properties of the alloy were studied. The microstructure, plasticity, strength, hardness, and texture intensity of rolled samples were analyzed in this work. The results show that the microstructure uniformity of the alloy under multi-path asynchronous rolling (MAR) is significantly improved, which improves the mechanical properties of the material to a certain extent, and effectively weakens the texture intensity of the basal plane and reduces the anisotropy. The amount of randomly oriented grains of ZK60 magnesium alloy rolled by the C-1.5 (path C combined with the RSR of 1:1.5) process are significantly increased, which significantly weakens the basal texture and improves the ductility of the alloy, greatly enhancing the processing and formability of ZK60 magnesium alloy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...